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ABSTRACT 
This document discusses some interesting features of the new coherence estimator in [1].  
The estimator is derived from a slightly different viewpoint.  We discuss a few properties 
of the estimator, including presenting the probability density function of the denominator 
of the new estimator, which is a new feature of this estimator.  Finally, we present an 
approximate equation for analysis of the sensitivity of the estimator to the knowledge of 
the noise value.   
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1. Executive Summary 
This document discuss some characteristics and an interpretation of the new “change 
estimator” from [1].  The probability density function of the denominator is derived, 
which is the new feature of this estimator.  The new estimator is sensitive to the relative 
knowledge of the value of the noise used in the estimator and we present an analysis of 
this sensitivity. 

.  
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2. Introduction 
This document derives the estimator in [1] from a slightly different perspective.  In 
particular, we discuss the interpretation of the new “change estimator” in [1] and the 
properties of the denominator.  We focus on the denominator because mathematically it is 
the new feature in the estimator in [1].  Finally, we present the sensitivity of the new 
estimator to the relative knowledge of the value of the noise used in the estimator. 

Coherent change detection (CCD) focuses on estimation of coherence between complex 
images as an indicator of change; however coherent change between images has many 
potential sources [2].  Therefore, as is implied in [1], it is not change in coherence that we 
wish to detect, but a specific type of change.  Namely, as called out in [1], we wish to 
detect specifically “anthropogenic and zoogenic” changes. 

Under the conditions where we can assume that the only significant sources of change 
between the images are due to thermal noise and/or “anthropogenic and zoogenic” 
change between the time the first image and second image are taken, then from [2] we 
can write the total coherence as: 

 tot az snrµ µ µ= ⋅  (1) 

where in this case azµ  is the desired “anthropogenic and zoogenic” temporal change that 
we wish to detect.   

We emphasize that in the applications where we wish to find change, it is not the 
coherence in and of itself that is important, but the use of coherence to detect the desired 
change.   

We can generate the result in [1], by recognizing that we wish to estimate and detect the 
desired change azµ  by solving equation (1) for: 

 tot
az

snr

µµ
µ

=  (2) 

Since this is the case, we need to estimate snrµ . 

From [2] (and other references therein): 

 
( ) ( )
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1 21 1snr
snr snr

snr snr
µ =

+ +
 (3) 

where 1snr  and 2snr  are the true expected values of the signal-to-noise ratios for the 
clutter cells in each of the two images that we correlate.   We can rewrite equation (3) as: 
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where 2
sis is the signal power of the ith image, and 2

niσ is the corresponding noise power 
for that image. 

If we let the signal-plus-noise ratio for the ith image be: 
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 (5) 

then we can rewrite equation (3) as: 

 
( ) ( )

( ) ( )
1 2
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1 1
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spnr spnr

spnr spnr
µ

− −
=  (6) 

At this point we will note that we are only able to deal with estimates of the coherence 
and coherence quantities.  The maximum likelihood estimate of the total coherence is 
given by (see [1,2]): 

1

1, 2,
0

1 12 2
1, 2,

0 0

ˆ

L

n n
n

tot L L

n n
n n

x x

x x
µ

−
∗

=

− −
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≈
∑

∑ ∑
 (7) 

where ,i nx  is the “voltage” for the ith image and the nth pixel, and L  (assumed to be) 
independent looks. 

It can be shown, given L independent samples under the assumption that ,i nx  is 
radiometrically calibrated, then the maximum likelihood estimate of ispnr is: 

1 2
,

0
2

1

ˆ

L

i n
n

i
ni

x
Lspnr

s

−

=

 
 
 ≈

∑
 (8) 

where 2
niσ  is the variance of the noise for the ith  image. 

Similarly the maximum likelihood estimator for isnr  can be shown to be: 

 



 

 

ˆ ˆ 1i isnr spnr≈ −  (9) 

If we can assume that we can substitute the maximum likelihood values into equation (3), 
and use the various equations above, we get an approximation for equation (2) of: 
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For now, let ( )1 2 2
1, 1

0

L

n n
n

u x σ
−

=

= −∑  and ( )1 2 2
2, 2

0

L

n n
n

v x σ
−

=

= −∑ , then we want to know more 

about uv .  We know from the inequality of the arithmetic and geometric means that: 

2
u v uv+

≥  (11) 

where the equality only occurs for u v= .  Therefore, as effectively in [1], the 
approximation is made as: 

2
u vuv +

≈  (12) 

In other words, for the application at hand: 

( ) ( )
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 (13) 

Again, in making the above approximation of the geometric mean as the arithmetic mean, 
we have assumed that: 
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x xσσ
− −

= =

− ≈ −∑ ∑  (14) 

In the general case as equation (11) shows, the approximation of the denominator in [1], 
and in equation (13), will be larger than the true value1. 

Making these assumptions and pulling together the equations above, we get the key 
equation from [1]: 
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1 1
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0 0

1 1 1 12 2 2 22 2 2 2
1, 1 2, 2 1, 2, 1 2

0 0 0 0

2 2
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∗ ∗
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= = = =
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∑ ∑

∑ ∑ ∑ ∑

 (15) 

We do not have to, but to simplify the interpretation of the results in this document from 
here on we will assume that the signal and noise powers are equivalent between each 
image for the rest of this document, i.e. 2 2

1 2s ss s= , and 2 2
1 2n nσσ = . 

 

 

 

 

 
  

                                                 
1 A quick thought experiment on the approximation shows that if we had no noise and the one image 
were say 1/10th the amplitude of the other image, then coherence from equation (10) would be 1 as it 
should be; whereas, the coherence using equation (15) would be nearly 0.2.  Also, note that [1] 
recommends some scaling to try to limit the effect of this problem. 



 

 

3. Statistical behavior of the denominator 
We now focus on the denominator of the estimator from [1], which is the last line in 
equation (13).  More details on the derivation are given in Appendix A and Appendix B.  
Again, although we do not have to, we will assume that 2 2 2

1 2s s ss s s= = and
2 2 2
1 2n n nσσσ  = =  . 

We need a couple of preliminaries before we describe the statistics of the denominator.  
First, let’s represent the denominator as: 

1 12 2 2
1, 2,

0 0

2

2

L L

n n n
n n

x x L
z

σ
− −

= =

+ −
=
∑ ∑

 (16) 

Let us make a change in random variable, by adding a constant, and then scaling by a 
constant, such that we have the new random variable, y , given by: 

( )
1 12 2

2 1, 2,
0 0

2 2

2
L L

n n
n n n

n n

x xz L
y

σ
σσ

− −

= =

++
= =

∑ ∑
 (17) 

The random variable, y , has the form which permits the use of equation (25) in the 

appendix2.  For this statistic, we let
2 2

1 2 2
s n

n

s sθ θ θ
s
+

= = = , L is of course the number of 

independent looks, and totµ  is, as before, the true coherence.  Based upon this, it can be 
shown that the probability density function (pdf) of y  is as follows (see appendices): 
 

( )
( ) ( ) ( )

1 2

1 22 21 2 21 2 1 2

2

exp
1 12 1

0

L
tot

Y LLL L
tot tottot tot

n

yy yf y I
L

y z L

µp
θ µ θ µµ µ θ

σ

−

−−− +

   
   = −   − −− Γ     

≥ ⇒ ≥ −
 (18) 

An important case of equation (18) occurs when 0totµ = .  For this case, equation (18) 
becomes a gamma pdf of (see Appendix A): 

                                                 
2 Note that it is not required to normalize the random variable by the scalar, 2

nσ  , but the author chose to 
mainly for plotting convenience. 



 

 

( ) ( )
2 1

2 exp 0
2

L

Y L
y yf y y

Lθ θ

−  = − ≥ Γ  
 (19) 

The mean of the variable z  from equation (16) is given by: 

2
sz Ls=  (20) 

and the variance of the variable z  from equation (16) is given by: 

( )
( ) ( )22 2 1

var
2

s n totL
z

s s µ+ +
=  (21) 

Figure 1 shows the simulated histograms versus pdf for a couple different cases.  Again 
in these plots we are showing the pdfs of the variable z  from equation (16) to help show 
what is really happening with the denominator variable.  For simplification we assume 
that 2 2

1 2 1n nσσ = = . Figure 1 shows the simulated histograms versus pdf for a couple 
different cases.  Again in these plots we are showing the pdfs of the variable z  from 
equation (16) to help show what is really happening with the denominator variable3. 

An interesting note is that there is always a non-zero probability that the denominator can 
be less than zero which means that azµ  in equation (15) can be negative.  Typically this 

will only occur for low signal, and hence  totµ  should be close to zero.  Nevertheless, we 
should probably consider either thresholding or using an absolute value on the 
denominator.  Figure 2 shows the probability of the denominator being negative versus 
total coherence, totµ  , assuming  1azµ =  (i.e., no “change”)4. 

In addition, values of the denominator can be close to zero with non-zero probability.  
Ideally these would only occur where the numerator from [1] is zero, but this is not 
always the case.  This means we can get very large values of the estimate of azµ   with 
some probability.  Of course, higher coherence and more looks help this situation.   As 
mentioned in [1], a threshold for values of azµ   can be set at one. 

                                                 
3 Note we really have the random variable z  normalized by 2

nσ . 
4 Unfortunately, in general the cumulative distribution function has to be determined numerically. 
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Figure 1:  Comparison of simulated histograms to pdf in equation (18): 
a) 0, 49Lµ = = , b) 0.5, 25Lµ = = , c) 0.8, 49Lµ = =  

 
Figure 2:  Probability of the denominator being less than zero versus 

coherence 
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4. Sensitivity to knowledge of noise power 
We now look at the sensitivity of the estimator to our knowledge (or estimate) of the 
noise power.  From equation (15), the first-order error can be found to be: 
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 (22) 

where  2
nσ

ε  is the error in the noise. 

We can rewrite this equation as approximately: 

2

ˆ 2
1ˆ
ˆ

n

az az
nsnr
s

µ

ε
ε µ

s
  ≈      

 (23) 

where ˆazµε is the error in the estimated change coherence due to misknowledge of the 

noise, 2
2

n
nσ

ε σ  is the error in our noise value used as a fraction of the true noise value, 

ˆazµ  is the estimated change coherence which ideally is one when there is no change, and 
we let ˆsnr  be the average estimated SNR for both images.   

Note from equation (23) that this error is a scaling error, i.e., it is proportional to the 
estimated change coherence (first term on lhs).  It is scaled by the reciprocal of the 
estimated signal to noise ratio (second term on lhs), and is relative to a fractional error in 
noise (third term on lhs). 

Using  ˆ 1azµ ≈  (expected mean for no change case) and ˆsnr snr≈  so we can 
approximate as: 

2

ˆ 2
1 n

az
nsnr
s

µ

ε
ε

s
  ≈      

 (24) 

Figure 3 shows a plot of equation the error using equation (24) versus the average error 
from simulation results.  In all of these we are assuming that there is no change.  We 
assume that 2

2 0.1
n

nσ
ε σ =   but we plot the scale factor for this term, i.e., the 

approximately “1/snr” term.  The figure shows that the approximation in equation (24) is 
a bit optimistic but reasonable.  What it does not show is that as the coherence goes lower 



 

 

than 0.6 we start to have issues in the simulation with getting close to the divide by zero 
denominator effects discussed above. 

 

 
Figure 3:  Scale factor for noise error - approximately equal to 1/snr in 

equation (24) 
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5. Conclusion 
We have discussed some attributes of the interesting new estimator presented in [1].  We 
re-derived this estimator from a slightly different viewpoint and showed that it attempts 
to reveal the desired change by removing the change due to thermal noise.  We showed 
some statistical properties of the denominator of this estimator.  Finally we presented the 
sensitivity of the estimator to errors in the noise estimate. 
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7. Appendix A:  Derivation of the denominator of 
the estimator 

This appendix derives the probability density function (pdf) for the denominator for the 
estimator discussed in this document. 

We want the distribution of the sum of two correlated gamma distributed random 
variables.  Given, a random variable, 1 2X X X= + , where 1X and 2X  are correlated 
gamma distributed random variables with shape parameter k  and scale parameters 1θ  
and 2θ , respectively.  Given this from [3], X is distributed as a McKay type 1 
distribution for the sum of squared-Nakagami (Gamma) distributed random variables: 

( ) ( ) ( )
1 22

1

1
exp

12
2

a a

X a
a a

c x c xf x x I H x
b bb a

p
+

+

−    = −        Γ + 
 

 (25) 

where: 

 ( )wΓ  - is the gamma function of the argument w  

 ( )nI w  - is the modified Bessel function of the first kind of argument w and order n   

 ( )H w  - Heaviside step function of argument w  

 1 2a k= −  (26) 

 ( )
( ) ( )

1 2
2

1 2 1 2

2 1

4 1
b

θ θ ρ

θ θ θ θ ρ

−
=

+ − −
 (27) 

 
( ) ( )

1 2
2

1 2 1 24 1
c θ θ

θ θ θ θ ρ

+
=

+ − −
 (28)  

 ρ  - is the correlation coefficient between 1X and 2X  

Note that: 

1 2

2 2
1 2

X X

X X
ρ =  (29) 

where φ  is the expected value of φ . 



 

 

We assume that the underlying process for generating the random variables 1X and 2X  is: 

21

1 1,
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k

i
i

k

i
i

X

X

τ

τ

−

=

−

=

=

=

∑

∑
 (30) 

where 1,iτ and 2,iτ are zero mean bivariate Gaussian distributed given by: 

( ) ( )
2 2
1, 2, 1, 2,

1, 2, 2 222
1 2 1 21 2

1 1, exp 2
2 12 1

i i i i
i if

τ τ τ ττ τ

τ τ τ τ
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σσσσ   µσσ  µ

   − + −  −  −  

−

 (31) 

Note that are these variables are independent for differing values of i, i.e., we are dealing 
with a multivariate random variable in a somewhat simplified manner.   We further 
assume that 1,iτ same variance, 2

1τσ , for all i.  Likewise, 2,iτ same variance, 2
2τσ  , for all i5. 

We now use the results from Appendix B along with the assumption from that appendix 
that 1 2θ θ θ= = to evaluate b , and c  above. 
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+
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Plugging into equation (25) yields : 

                                                 
5 Although we do not have to, we will soon simplify even further and assume that 2 2 2

1 2τ τ τσσσ  = = . 
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x
xxf x I H x

k

xx xf x I H x
L

µ
p

µ µ

θ µ θ µθ µ

µ

µp
θ µ θ µθ µ µ

−

−+

−

−

−−− +

 −
      
     = −

   − − −      Γ
 
 

   
   = −
   − −Γ −    

 (34) 

where we have let the number of looks be L k= , in the last equation. 

We note an interesting case is when 0µ = then this simplifies to a gamma distribution 
since we assumed the same statistics for both 1X  and 2X : 

( ) ( )
2 1

2 exp 0
2

L

Y L
y yf y y

Lθ θ

−  = − ≥ Γ  
 (35) 

The above equation requires repeated use of L’Hôpital’s rule and the duplication formula 
for gamma distributions. 
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8. Appendix B:  Important moments 
This appendix derives some moments that are important for this document.  One of the 
main equations we want is to rewrite the correlation coefficient, ρ , between 1X and 2X  
in terms of the correlation coefficient, µ , between 1,iτ and 2,iτ . 

Where: 

1 2

2 2
1 2

τ τ
µ

τ τ

∗

=  (36) 

From the previous equation we can see that: 

2 2 2
1 2 2 1 1 2 1 2 1 2τ τ τ τ τ τ τ τ τ τ µ

∗∗ ∗ ∗ ∗= =  (37) 

We will need the moment theorem for circular complex Gaussian random processes [4]: 

1 1 2 2 1 1 2 2 1 2 1 2τ τ τ τ τ τ τ τ τ τ τ τ∗ ∗ ∗ ∗ ∗ ∗= +  (38) 

Combining equations (37) and (38): 

( )2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 1 2 2 1 2 1 2 1τ τ τ τ τ τ τ τ τ τ τ τ µ τ τ µ∗ ∗ ∗ ∗= = + = +

 (39) 

Since 1,iτ and 2,iτ  are Gaussian with the same statistics, then 2
1,iτ  and 2

2,iτ are exponentially 
distributed.  Again, even though it is not required we will assume the mean of both of 
these exponential distributions is θ . 

Therefore equation (39)  becomes: 

( )2 2 22
1 1 2 2 1 2 1τ τ τ τ τ τ θ µ∗ ∗ = = +  (40) 

We want, ρ , from equation (29): 

2 2 2 21 1 1 1

1, 2, 1 2
0 0 0 0

2 22 22 2 2 21 1 1 1

1 1 2 2
0 0 0 0

k k k k

i i
i i i i

k k k k

i i i i

τ τ τ τ

ρ

τ τ τ τ

− − −

= = = =

− − − −

= = = =

 
−   
 =

             − −                           

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

 (41) 



 

 

We start with: 

2 2

1 2 1, 2,
1 1

k k

i i
i i

X X τ τ
= =

= ∑ ∑  (42) 

We note that: 

2 22 2
1, 2, 1, 2, fori j i j i jτ τ τ τ= ≠  (43) 

because of the independence of these terms. 

Then: 

( )2 2 2 2
1 2 1 2 1 21X X k k kτ τ τ τ= + −  (44) 

which is: 

( ) ( ) ( )
2

222 2
1 2 1 1 1X X k k k k

k
µ

θ µ θ θ
 

= + + − = +  
 

 (45) 

and: 

( )
2 2

2
1 2

1 1

k k

i i
kτ τ θ

= =

=∑ ∑  (46) 

So the numerator in equation (41) is: 

( ) ( )
22 2 2 21 1 1 1

2 2 2 2
1, 2, 1 2

0 0 0 0

1
k k k k

i i
i i i i

k k k
k
µ

τ τ τ τ θ θ µ θ
− − − −

= = = =

   
− = + − =     

  
∑ ∑ ∑ ∑

 (47) 

The denominator of equation (41) is the geometric mean of the variances of the two 
gamma distributions.  Since we assume that the variances are the same for both 
variables, then the denominator is: 

2 22 22 2 2 21 1 1 1
2 2 2

1 1 2 2
0 0 0 0

k k k k

i i i i
k k kτ τ τ τ θ θ θ

− − − −

= = = =

             − − = =                           
∑ ∑ ∑ ∑

 (48) 

So putting equations (47) and (48) into equation (41) leads to: 



 

 

2ρ µ=  (49) 

From [3] the mean of the distribution in equation (25) is: 

( )
2

2 1
1

a bc
X

c
+

=
−

 (50) 

and the variance of the distribution is: 

( ) ( ) ( )
( )

2 2
2

22

2 1 1

1

a b c
X X

c

+ +
− =

−
 (51) 

Substituting in 1 2θ θ θ= = and equation (49) into equations (27) and (28): 

( )21
b

θ µ

µ

−
=  (52) 

1c
µ

=  (53) 

Substituting in the above equations and equation (26): 

2X kθ=  (54) 

( ) ( ) ( )2 222 1X X kθ µ− = +  (55) 

Now we want to look at the specific case of  

1 12 2 2
1, 2,

0 0

2

2

L L

n n n
n n

x x L
z

σ
− −

= =

+ −
=
∑ ∑

 (56) 

For the random variable, z , if 2 2 2 2
1 2x x s nθ s s s s= = = +  then 2 2

s nθ s s= +  and the mean of 
the distribution of z is: 

( )2 2 2
22 2

2
s n n

s

L L
z L

s s s
s

+ −
= =  (57) 

Next we look at the variance of z .  The addition of a constant does not affect the 
variance, but of course, the scaling does scale the variance.  Therefore the variance is: 



 

 

( )
( ) ( ) ( ) ( )2 22 22 2 2 2

2 2 1 1

4 2
s n s nL L

z z
s s µ s s µ+ + + +

− = =  (58) 

 
  



 

 

  

9. Appendix C:  Symbols and terminology 
Variable definitions 
 

( )H w  - is the Heaviside step function of argument w  

( )nI w  - is the modified Bessel function of the first kind of argument w and 
order n   

L  - independent looks averaged to estimate the coherence between two 
images 

1 2, , ,isnr snr snr snr - true signal-to-noise ratio of image #i, image #1, image #2, 
and in general, respectively, (unitless) 

1 2ˆ ˆ ˆ ˆ, , ,isnr snr snr snr - estimate of the signal-to-noise ratio of image #i, image #1, 
image #2, and in general, respectively, (unitless) 

1 2, , ,ispnr spnr spnr spnr - true signal-plus-noise ratio of image #i, image #1, 
image #2, and in general, respectively, (unitless) 

1 2ˆ ˆ ˆ ˆ, , ,ispnr spnr spnr spnr - estimate of the signal-plus-noise ratio of image #i, 
image #1, image #2, and in general, respectively, (unitless) 

1,nx  - “voltage” of the nth complex image pixel from image #1 

2,nx  - “voltage” of the nth complex image pixel from image #2 

2
nσ

ε  - is the bias error in the assumed noise power (note this is not a random 

variable) 

azµε  - is the error in the estimated value for ˆazµ  

( )wΓ  - is the gamma function of the argument w  

azµ - population coherence of “anthropogenic and zoogenic” changes between 
two complex images 

ˆazµ - estimate of the coherence due to “anthropogenic and zoogenic” changes 
(i.e., sample coherence) between two complex images 

snrµ - true coherence due to thermal noise between two complex images 

totµ - total population coherence between two complex images 
ˆtotµ - estimate of the total coherence (i.e., sample coherence) between two 

complex images 
ρ  - correlation coefficient between the square (of the absolute values) 

between the corresponding samples of two images 
2 2 2
1 2, ,s s ss s s  - signal power in image #1, image #2, and in general, respectively 

2 2 2
1 2, ,n n nσσσ    - noise power in image #1, image #2, and in general, respectively 
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